11.8 Concluding remarks

Printer-friendly version

Flavr SavrTM tomato provides a dramatic example of how molecular techniques can change properties of a fruit in ways that help both postharvest handling and eating qualities. Political and ethical issues aside, wider use of genetically engineered plants could have a major impact on postharvest handling of many other horticultural products. Consumers will need to be well informed about changes resulting from conventional breeding and those resulting from genetic engineering. There will also need to be improved physiological and biochemical knowledge about the postharvest responses of each species to be engineered.

Over the past century, fruit production and postharvest technology have been a powerful influence on progress in human societies and personal lifestyles. Very few people in ‘developed societies’ now grow their own fruit or vegetables; mass production has become much more efficient and wastage much lower; food quality has increased and people are better nourished; seasonal fruits are available year round; large amounts of product are distributed worldwide. Even cut flowers have become commodities of global trade instead of specimens from our own gardens, and in all cases postharvest technology has grown from process physiology. This area of plant science still offers exciting prospects for global horticulture, especially in tropical environments where new issues confront physiologists.